Расчет плиты фундамента под дом: формулы, примеры, вычисление по несущей способности, для буронабивного основания, работа со scad, проверка на опрокидывание

Попробуем рассчитать фундаментную плиту под небольшое гражданское здание, нам ассистирует программа SCAD и КРОСС

Считаем что у нас все готово, а именно мы знаем что давит на нее сверху и что сопротивляется этому давлению снизу. 

Шаг 1. Создаем очертание плиты. Создаем контур, отступая от габаритов колонн или стен здания. Вылет консоли плиты желательно делать не менее ширины плиты. Теперь контур необходимо разбить на определенной количество пластинчатых элементов. В SCAD существует как минимум два способа:

Первый

Расчет плиты фундамента под дом: формулы, примеры, вычисление по несущей способности, для буронабивного основания, работа со SCAD, проверка на опрокидывание

На вкладке «узлы и элементы» выбираем элементы(1), затем создаем элементы(2) и после разбиваем(3). Минусы — постоянно необходимо просчитывать на какое количество элементов ты хочешь разбить и в обоих направлениях, при это неусыпно следить за направлениями собственных осей.

Если у вас сетка 6х6 — хорошо. А если нет, а если кривое здание и треугольные элементы? Для треугольных элементов есть своя кнопка, аналог (3), но ей лучше никогда не пользоваться, как и треугольными элементами.

Это окно будет сниться, если будете делать это впервые для плиты как в этом примере.

Расчет плиты фундамента под дом: формулы, примеры, вычисление по несущей способности, для буронабивного основания, работа со SCAD, проверка на опрокидывание

Второй

Расчет плиты фундамента под дом: формулы, примеры, вычисление по несущей способности, для буронабивного основания, работа со SCAD, проверка на опрокидываниеРасчет плиты фундамента под дом: формулы, примеры, вычисление по несущей способности, для буронабивного основания, работа со SCAD, проверка на опрокидывание

На вкладке «схема» находим кнопку (1), затем определяем контур при помощи кнопки (2). Окончанием определения контура должно служить двукратное нажатие левой кнопки мыши. После кнопка (3) и появится окно для выбора параметров разбивки.

Расчет плиты фундамента под дом: формулы, примеры, вычисление по несущей способности, для буронабивного основания, работа со SCAD, проверка на опрокидывание

Я обычно в этом окне выбираю метод «В», «создание ортогональной сетки с заданным максимальным размером элемента», «шаг триангуляции» назначаю в зависимости от толщины (как правило шаг 0,3 — 0,4) и ставлю галочку «объединить 3-х узловые элементы в 4-х узловые». Можно и сразу назначит жесткости.

Эффективным, как и должно быть, является смешанный метод. Первым методом задаешь количество в том или ином направлении, а вторым затем разбиваем с тем же шагом. Так же не забываем изменить/задать тип элементов фундаментной плиты — это должен быть 44 тип КЭ (вкладка «назначение» — «назначение типов конечных элементов»).

Ранее у нас колонны/стены были защемлены якобы в фундаменте. Сейчас вместо него плита и если мы уберем защемление, то все наше «добро» «провалится» и расчет не будет выполнен. Есть несколько подходов к решению этой проблемы. Некоторые защемляют несколько узлов по краям и в середине, или полосами вдоль и поперек.

 Некоторые используют 51 тип КЭ. Я пробовал и тот и другой вариант. При использовании защемления в этих местах получим пиковое армирование, а в случае 51 КЭ — нет. В остальном разницы не нашел, поэтому я за 51 КЭ.

Все узлы фундаментной плиты выделяем и задаем «связи конечной жесткости» («узлы и элементы» —  «специальные элементы»).

Расчет плиты фундамента под дом: формулы, примеры, вычисление по несущей способности, для буронабивного основания, работа со SCAD, проверка на опрокидывание

Шаг 2. Расчет при помощи КРОСС.

Если обратится к официальной странице, то там о КРОСС написано «…результат работы программы являются значения коэффициентов постели…», но и есть и информация (хвалебная статья) о том, что в КРОСС используется «билинейная модель», которая «лучше отвечает опытным данным». 

То, что будет описано ниже — воистину танец с бубном! Если нет времени лучше неуклонно следовать инструкции, но сначала дочитайте до конца.

Для первоначального расчета  нам необходимо значение равномерно распределенной нагрузки на поверхность плиты. Взять ее можно из протокола решения задачи, сложив суммарные нагрузки по Z, и разделив на площадь фундаментной плиты. Площадь фундаментной плиты можно попытаться измерить инструментом «определении площади полигона» на вкладке «управления». Если даже объект смоделирован в SCAD и хотелось бы рассчитать «так как есть», то все равно придется первый раз пробежаться с равномерно распределенной, потому что во так вот. При передачи данных в КРОСС нас будут спрашивать постоянно «открыть ли существующую площадку». Первый раз все-таки «нет», а потом возможно что «да». Увлекательный процесс задания грунтов и скважин не описывается, о нем можно прочитать здесь. Задаем равномерно распределенную нагрузку и отметку фундаментной плиты. Рассчитываем и предаем данные в SCAD. В окне «назначения коэффициентов упругого основания» можно изменить количество коэффициентов, а можно и не менять. После коэффициенты применяются к плите. Результат можно увидеть нажав правой кнопкой мыши на иконку «номера типов жесткости» панели «фильтры отображения и выполнив ряд манипуляций.

Расчет плиты фундамента под дом: формулы, примеры, вычисление по несущей способности, для буронабивного основания, работа со SCAD, проверка на опрокидывание

Выполняем расчет. На этом можно закончить, но если есть желание посидеть еще пару часов, то после расчета опять выделяем элементы фундаментной плиты и пытаем передать данные в КРОСС. Вот оно, окно.

Расчет плиты фундамента под дом: формулы, примеры, вычисление по несущей способности, для буронабивного основания, работа со SCAD, проверка на опрокидывание

Соглашаемся и выбираем загружение или комбинацию

Расчет плиты фундамента под дом: формулы, примеры, вычисление по несущей способности, для буронабивного основания, работа со SCAD, проверка на опрокидывание

Данные передаются в КРОСС. Далее по идеи необходимо зайти в «настройки» — «нагрузки получены из SCAD» и убрать равномерно распределенную нагрузку (сделать ее равной нулю). Можно считать.

После расчета (если получилось), передаем снова данный в SCAD, пересчитываем, снова передаем в КРОСС и т.д. пока не надоест.

Если что-то не получилось я отметил ниже, то с чем столкнулся сам, может поможет:

— Если задать грунт, а потом редактировать номера скважин, то усилия могут пойти прахом, грунты могу исчезнуть (как у меня) и придется заполнять заново.- Менее важно, но все же — при заполнении таблицы “грунты”, если вы забыл какой-то слой ввести в порядке очереди, для порядку, то вставить его в нужное место потом уже не получиться (как у меня).- Тоже пустяк — если грунт водонасыщенный, то надо бы задать его отдельным слоем, со своими параметрами, другого механизма нет.

— И еще, уже подсказка — при заполнении скважин лучше давать отметки как есть в геологии, абсолютные, а то запутаться можно.

— В окне «назначения коэффициентов упругого основания» лучше всего ограничивать число коэффициентов, хотя бы до 100, по двум причинам: читать результат будет легче и есть подозрение, что если ничего не трогать коэффициенты не присваиваются.
— Очень важное наблюдение — если вы, вдруг, захотели изменить геометрию плиты и засунуть в существующую площадку, то вам не повезло. Конечно можно создать новую, но экспорта ни грунтов ни скважин я не нашел, то есть геологию придется вводить по новый. Если не хочется вводить по новый, а геометрию все-таки изменили, то путь решения проблемы следующий:
— создаем новую площадку и выписываем от туда ее габариты (можно больше), чтобы в точности (можно не в точности) вставить их в существующую
— есть кнопка удалить, воспользуемся ее и удалим существующий контур фундаментной плиты (возможно, что операция и лишняя, и достаточно выполнить пункт ниже)
— этот пункт сложнее всего выполнить. из SCAD передаем в существующую площадку КРОСС новую геометрию (с измененным габаритом и уделенным контуром). теперь самое интересное. контур новой плиты отображен на площадке, а его очертание привязано к курсору мыши и перемещается по экрану вместе с ним. если нажать правую кнопку — результата не будет, все пропадет. остается один способ — левая кнопка. но(!) нужно попасть очертанием на контур (чтобы синие линии стали желтыми!), причем чуть-чуть промахнуться можно, но на сколько, только КРОСС знает. если что-то пойдет не так — он (КРОСС) остановит сообщением “ошибка импорта”
Для выполнения итераций КРОСС — SCAD пришлось своим умом пройти тернистый не логичный путь, чтобы данные из SCAD все-таки учитывались в КРОСС (потрясающая программа отняла у меня два дня жизни). Разработанный мною алгоритм не совпадает с описанным в руководстве пользователя. Там (в руководстве) предлагают просто передать нагрузку в существующую площадку, затем удалить нагрузку равномерно распределенную, затем в меню “настройки” поставить галочку “нагрузки полученные из SCAD”. Схема преобразится, но если нажать расчет выскочит сообщение о нулевых осадках. Лечится созданием схемы только с геологией и отметкой подошвы (с нулевой нагрузкой на плиту). Вставляя в эту схему и щелкая “нагрузки полученные из SCAD” действительно все работает.Шаг 3. Расчет средствами SCAD
Как бы хорош не был КРОСС, возможности в этом направлении у SCAD еще хуже. Одно то чувство при работе с КРОСС — серьезная программа, дружественный интерфейс, почти все функции работают и почти все понятно. Когда делаешь то же самое в SCAD такие чувства не возникают.  Возникает одно — а стоит ли делать это в SCAD? Я проверил — ответ между строк. Во такое диалоговое окно, после того как мы прошлись по вкладке «назначения» — «назначения коэффициентов упругого основания»

Читайте также:  Обрезной брус: характеристики, виды, сфера применения, средняя цена

Расчет плиты фундамента под дом: формулы, примеры, вычисление по несущей способности, для буронабивного основания, работа со SCAD, проверка на опрокидывание Я выбирал «расчет коэффициентов деформированности основания» руководствуясь те, что имею в качестве исходных данных именно модуль деформации, который там и требуется (если выбрать «расчет коэффициентов упругого основания» то с нас потребуют модуль упругости). На самом деле меня ввели в заблуждение или я сам заблудился. Расчет необходимо вести по упругому основанию, а так результат сопоставим с разницей в 10 раз. Появляется окно с характеристиками. Вводим данные слоя, сохраняем, вводим новый и т.д. Затем расчет и применяем к элементам. Очень утомительно, если на площадке больше одной скважины

Вывод.

Сначала по делу. При итерациях КРОСС — SCAD изменения можно увидеть и не только при смене равномерно распределенной нагрузки на результаты реакции грунта.

Только на результат в итоге это не сильно повлияло, возможно у меня был такой «неудачный» пример.

А вот если рассмотреть методическое пособие, на которое ссылался выше, то там различия мне найти не удалось, сколько не всматривался. Результат полученный собственно SCAD сопоставим с КРОССом.

Чтобы не быть голословным вот таблица

Давление грунта под подошвой (расположение соответственно таблице)

Спасибо создателем КРОСС, что не бросили нас в беде вместе со SCAD, только один вопрос — 

создатели SCAD и КРОСС, кто вы? Мне казалось что эти люди если не одни и те же, то хотя бы сидят рядом.

Пример расчета фундаментной плиты в сложных геологических условиях

Расчет отдельно стоящих фундаментов в SCAD office

Инженер, столкнувшийся с расчетом каркаса здания, одним из несущих элементов которого является колонна, придет к необходимости расчета отдельно стоящего фундамента. Для расчета в вычислительном комплексе SCAD разработчики предусмотрели практически полный функционал для определения несущей способности по всем критериям проверки фундамента.

Итак, выполнив построение каркаса, например, металлического потребуется расчет отдельно стоящих фундаментов.

Для этого в вычислительном комплексе SCAD необходимо указать узлы, закрепленные от смещения по заданным направлениям и углам поворота (именно в этих узлах можно выполнить расчет реакции опор).

Анализу подвергаются чаще всего вертикальная реакция, горизонтальная и момент в плоскости работы конструкции. Вычислительный комплекс SCAD выводит реакции для всех узлов, отмеченных пользователем, как правило, рассматривается три комбинации нагрузок для:

  • Rzмакс, Rxсоотв, Ruyсоотв
  • Rzсоотв, Rxмакс, Ruyсоотв
  • Rzсоотв, Rxсоотв, Ruyмакс

Максимальные значения при большой загруженности схемы визуально определить непросто, можно воспользоваться инструментом «документирование», где с помощью вывода таблицы всех значений из вычислительного комплекса SCAD в MS Excel фильтруется нужные ячейки чисел.

Полученные комбинации значения необходимо далее использовать при расчете отдельно стоящего фундамента. Расчет отдельно стоящих фундаментов можно выполнять и вручную, для этого производятся вычисления давления под подошвой фундамента.

Ввиду возникающего момента, давление получается неравномерным. Вычисление краевых значений производится по формуле

где:

  • N – сумма вертикальных нагрузок на фундамент, тс
  • A – площадь фундамента, м2
  • M — момент от равнодействующей всех нагрузок, действующих по подошве фундамента
  • W — момент сопротивления площади подошвы фундамента, м3 (для ленточного фундамента длина сечения 1м) , где b – ширина фундамента.

Следующим этапом расчета отдельно стоящего фундамента становится определение расчетного сопротивления грунта. Вычисления производятся по СП 22.13330.2011 «Основания зданий и сооружений», формула 5.7. Для расчета нужны инженерно-геологические изыскания слоев грунта рассматриваемой площадки строительства (или непосредственно под отдельно стоящем фундаменте).

Вычисления расчетного сопротивления грунта для отдельно стоящего фундамента можно также производить с помощью программы ЗАПРОС (сателлита вычислительного комплекса SCAD). В программе реализован расчет по СП 22.13330.2011 «Основания зданий и сооружений».

Получившееся значение R должно быть обязательно больше значения давления P. В противном случае требуется уменьшение давления на грунт, например, увеличением площади отдельно стоящего фундамента. Площадь фундамента и момент сопротивления сечения фундамента находятся в знаменателе формулы нахождения давления P, что и заставляет снижать показатель давления.

При расчете отдельно стоящего фундамента нельзя также забывать и о расчете фундаментной плиты на продавливание и вычисления несущей способности. Фундаментная плита по несущей способности рассчитывается как двух консольная балка, нагрузка на которую равна давлению на грунт (III закон Ньютона). Результатом расчета становится установка рабочей «нижней» арматуры сечения плиты.

Усилие на плиту от колонны приходит весьма существенное, поэтому при расчете на продавливание может возникнуть необходимость установки дополнительных ступеней отдельно стоящего фундамента.

Продавливание, как и расчет двух консольной балки, может выполнить программа АРБАТ (сателлита вычислительного комплекса SCAD).

При выполнении всего вышеописанного алгоритма можно считать расчет отдельно стоящего фундамента выполненным.

Теперь вернемся к схеме каркаса здания. Любой фундамент на грунтовом основании (кроме скального) проседает под действием той или иной нагрузки. Полученная дополнительная деформация схемы способствует изменению перераспределению усилий уже в элементах схемы.

Отсюда появляется необходимость в некоторых случаях (наиболее ответственных) устанавливать не жесткое защемление, а упругую связь, в месте примыкания колонны к отдельно стоящему фундаменту.

Вычислительный комплекс SCAD не вычисляет автоматически жесткость упругой связи, но можно эту операцию выполнить вручную.

Жесткость упругой связи при вертикальном смещении равна отношению несущей способности отдеьлно стоящего фундамента к его осадке, полученное значение измеряется в т/м. Осадка может быть вычислена с помощью программы ЗАПРОС (сателлита вычислительного комплекса SCAD).

Произведя расчет отдельно стоящих фундаментов мы получаем более точную картину деформации здания, а значит и более точные усилия в конченых элементах.

Итак, с помощь вычислительного комплекса SCAD пользователь сможет выполнить требуемый расчет отдельно стоящих фундаментов, подобрать необходимую площадь основания, выполнить расчет на продавливание, определить крен здания, а также учесть перераспределение усилий в зависимости полученной осадки конструкции.

Скачать пример из задачи

Порядок действий и формула для расчета монолитной плиты фундамента

В основе строительства любого фундамента заложено исследование участка и подробное проектирование конструктивных элементов.

Ниже представлены основные правила расчета фундамента типа «монолитная плита», которые пригодятся частным застройщикам, решившим заложить силовую конструкцию под дом своими руками, а также детали вычисления с помощью программы SCAD.

Принцип строения монолитного фундамента

Основой конструкции плитного фундамента служит монолитный бетонно-армированный слой. Подобная конструкция позволяет равномерно распределять усилия от здания на дно котлована.

При просадке и перемещении грунта фундамент компенсирует изменения. Это свойство называют «плавучестью» основания.

Для его изготовления используют высококачественный бетон. Высоту конструкции определяют расчетным способом. Основными критериями для подсчета являются характеристика грунта и проектная нагрузка от сооружения.

  Делаем битумный праймер двумя способами — инструкция с видео

Правильное выполнение заливки

При заливке плиты бетонным раствором лучше использовать один заход. У некоторых строителей этот процесс разбивается на несколько операций и сначала заливается половина фундамента. Для этого потребуется создание вертикальных перегородок.

Обязательным условием является заливка полной высоты опалубки.

Считается, что необходимо наличие наклонного шва. Для этого делается угловая перегородка. При строительстве малоэтажных сооружений можно применять метод частичной заливки. В этих случаях не требуются особенная устойчивость фундаментной конструкции.

Схема фундаментной плиты под фундамент.

Не рекомендуется делать горизонтальные швы рядом с горизонтальной арматурой. При идеальном варианте металл не должен располагаться на стыке. Если заливка осуществляется небольшими площадями, следует предусмотреть наличие вертикальных швов.

Конструкция монолитного фундамента

Плитный фундамент имеет следующую конструкцию:

Устройство монолитной плиты фундамента

  • Котлован.
  • Дренажная система.
  • Опалубка.
  • Песчаная подушка.
  • Слой геотекстиля.
  • Щебеночный слой.
  • Бетонная подготовка.
  • Гидроизоляция.
  • Теплоизоляция.
  • Арматура.

Котлован

Для устройства фундаментной плиты выкапывают котлован. Размеры котлована в плане должны превышать размеры будущего дома на 1–2 метра. Увеличенные размеры служат для укладки дренажа и устройства отмостки.

Читайте также:  Забор из газоблока: плюсы и минусы применения газобетонных блоков, пошаговая инструкция по строительству ограждения

Чертеж котлована

Дренажная система

Дренаж служит для отвода поверхностных вод от внешних стен здания. Состоит из системы перфорированных труб и приемного колодца. Трубы укладывают с небольшим уклоном. Для защиты от проникновения песка трубы оборачивают 1–2 слоями геотекстиля.

Дренаж для монолитного фундамента

Опалубка

Для изготовления опалубки используют деревянные доски или водостойкую фанеру. Все элементы соединяют с помощью саморезов и стальной проволоки.

Пример опалубки плитного фундамента

Песчаная подушка

Для устройства песчаной подушки используют крупнозернистый песок. Песок позволяет воспринимать и равномерно распределять усилия на плавающую плиту.

  Варианты и технология строительства бетонных подпорных стен

Песчаная подушка под фундамент

Геотекстиль

Между щебнем и песком укладывают слой геотекстиля. Он защищает состав от перемешивания и нарушения дренирующих свойств щебня.

Щебень

Служит для восприятия и передачи усилий на песчаную подушку. Щебень применяют в качестве дополнительной дренирующей системы. Вода при прохождении ослабляет напор и теряет способность к вымыванию песка.

Щебень для монолитного фундамента

Бетонная подготовка

На песчано-щебневое основание укладывают бетонную подготовку. Высота конструкции составляет 50–150 мм. Подготовку выполняют из бетона низких марок.

Бетонная подготовка:

  • защищает бетон от утечки цемента;
  • равномерно распределяет нагрузку;
  • делает удобным монтаж стального каркаса.

Состав бетонного раствора для фундамента

Гидроизоляция

На бетонную подготовку укладывают слой гидроизоляции. В качестве материалов используют полимерно-битумные вещества. Гидроизоляционный материал служит для защиты фундаментной плиты от проникновения грунтовой влаги.

Гидроизоляция фундаментов

Теплоизоляция

Теплоизоляция служит для защиты основания от промерзания. В качестве утеплителя используют экструдированный пенополистирол. Высоту слоя принимают 10–15 см.

На теплоизоляцию укладывают полиэтиленовую пленку. Она служит защитой от проникновения жидких компонентов бетонной смеси в утеплитель.

Схема теплоизоляции плиты фундамента пенополистиролом

Арматура

Опорные элементы зданий армируются стальными каркасами. Сетка изготавливается из ребристых стальных стержней диаметром 12–18 мм. Они связаны в единый пространственный каркас с помощью стальной тонкой проволоки.

Размер ячеек каркаса зависит от величины проектируемых усилий на основание. Размер ячеек определяется расчетным путем и составляет от 10 до 25 сантиметров.

Схема армирования монолитной плиты

Преимущества фундаментной плиты

К достоинствам конструкции можно отнести:

  • строительство на грунтах с плохими характеристиками;
  • возможность возведения крупных объектов;
  • возможность самостоятельной заливки;
  • высокая несущая способность;
  • предотвращение локальных деформаций;
  • устойчивость к воздействию сил морозного пучения.

К слабым сторонам такого типа фундаментов относят:

  • нецелесообразность использования на участках с уклоном;
  • большой расход бетона и арматуры;
  • по сравнению с готовыми элементами фундамента, устройство монолитной плиты требует дополнительного времени на набор прочности бетоном;
  • сложный расчет.

Расчет высоты фундамента

Целью расчета толщины плитного фундамента являются:

  • Определение размеров опорной плиты.
  • Вычисление нагрузок на дно котлована.
  • Подсчет необходимых материалов.

Исходные данные:

  • Вид и характеристика грунта основания.
  • Материал элементов здания.
  • Проектируемые усилия.
  • Расчет толщины плитного фундамента
  • При расчете учитывают два типа усилий:
  • Устройство плитного фундамента — размеры
  • статические;
  • динамические.

Статические силы являются постоянной величиной. Они вызваны весом элементов здания.

Динамические усилия изменяются во времени и в значениях. Они оказываются людьми, мебелью, оборудованием и влиянием атмосферных осадков.

При подсчете нагрузок постоянного действия используют повышающие коэффициенты надежности конструкций. Эти коэффициенты зависят от размеров и материала элементов здания. Значения коэффициентов приведены в нормативных документах.

Подсчет динамических усилий ведут с учетом условий местности, типов используемой мебели, оборудования, планируемой заселенности дома.

В качестве результатов расчета получают следующие данные:

  • Удельная нагрузка на 1 м2 грунта основания.
  • Допустимая толщина конструкции.
  • Глубина залегания фундамента.

Определение объема материалов на плитное основание

Правильное выполнение бетонного замеса

Рассматривая вопрос, как залить плиту под фундамент. следует ознакомиться со способами приготовления бетонной смеси. Для экономии средств можно самостоятельно сделать замес на участке строительства.

Наличие рабочей бетономешалки сделает процесс менее трудоёмким. Устройство потребляет мощность 200 Вт и выше. За одну операцию можно приготовить до 200 литров бетонного состава.

Как залить плиту под фундамент своими руками.

Использование бетономешалки позволит улучшить качество бетона. В ней равномерно перемешиваются все составляющие и при этом не образуются комки. Хорошо разместить бетономешалку рядом с объектом заливки.

В результате этого уменьшаться затрачиваемые силы. Для того, чтобы работа была комфортной, следует применять удобные инструменты, приспособленные для взаимодействия с сухими и влажными веществами, иначе будет происходить их прилипание к влажной поверхности.

Как залить плиту под фундамент своими руками.

Последовательность расчета

В процессе расчета плитного фундамента выполняют следующие действия:

Технология устройства плитного фундамента

  • Вычисляют суммарные усилия от фундамента и основной части сооружения. Значение определяют сложением сил постоянного и временного действия.
  • Определяют допустимую нагрузку. Величину определяют по нормативным документам в зависимости от типа грунта.
  • Определяют максимальную массу основания.
  • Вычисляют максимальную толщину опорной плиты. Полученное значение округляют в меньшую сторону до значения, кратного 5 мм.
  • Повторяют решение задачи с принятой толщиной опоры.

Для автоматизации процесса используются специальные компьютерные программы.

Этапы заливки плиточного основания

Как залить плиту под фундамент гаража.

Для получения качественного и функционального основания нужно пройти через такие этапы:

  Устройство монолитного перекрытия по металлическим балкам

  1. Перед началом работы нужно изучить поверхность грунта на предмет наличия перепадов высоты.
  2. Нужно тщательно выровнять строительный участок – убрать неровности по всей плоскости, где будет устанавливаться фундамент.

  3. Засыпать бетонную подушку, состоящую из песка и щебня.
  4. Уложить гидроизоляцию.
  5. Изготовить опалубку.
  6. Смонтировать двойной армированный каркас.
  7. Залить бетонную смесь.

    Уложить последний слой необходимо за небольшой промежуток времени, для того чтобы можно было разгладить поверхность делая при этом плоскость более ровной.

  8. Для того чтобы плиточная основа равномерно сохла, что позволит сделать ее более качественной и прочной, ее необходимо накрыть полиэтиленовой пленкой и оставить на 1 – 1,5 месяца.
  9. Последний этап – установка теплоизоляции.

Залить плиту под фундамент цена калькулятор.

Поэтапно выполненные работы позволят получить на выходе прочный и надежный плиточный фундамент.

Если сделать правильные и точные подсчеты, при этом рассчитать физические и временные затраты, это позволит не только значительно сэкономить средства и время, но и получить хороший результат выполненной работы.

Для этого нужно минимальное количество знаний, а именно, понимать, как правильно сделать прочный и надежный фундамент.

Рекомендация: Хорошая обзорная статья, из нее узнаете как залить плиту под фундамент. Обратите особое внимание, чтобы плита была залита за 1 день. Если нет такой возможности, то чтобы в будущем плита не трескалась обязательно нужно обеспечить надежное соединение между старым и новыми слоями бетона. В противном случае вы построите бракованную плиту.

Анализ результатов расчета

В процессе подсчета получают следующую высоту фундамента, мм:

Глубина ленточного фундамента

  • менее 150;
  • от 150 до 350;
  • более 350.

В первом случае монолит не подходит в качестве опоры. Требуются дополнительные обследования и принятие решений для укрепления грунтов.

Во втором случае бетон подходит в качестве основания. Полученный результат округляют до ближайшего значения, кратного 50 мм.

В третьем случае бетон не подходит в качестве опорной части. Требуется принимать другой вариант опор (ленточный или столбчатый).

Каким может быть плитное основание

Различают два типа фундаментных конструкций:

  • Обычная забетонированная подушка;
  • Фундамент, обладающий рёбрами жёсткости.

Остальные виды относятся к совместимым сооружениям. Например, свайные плиты или ленточно-плиточные конструкции.

Как залить фундамент плиту под дом.

Последний тип наиболее востребован в строениях, содержащих подвальные помещения. Выкапывается котлован и устанавливается забетонированная подушка. На неё производят установку основания. Основную нагрузку несёт ленточный фундамент.

Наиболее прочную основу представляет собой плита, в состав которой входят рёбра жёсткости. Для её сооружения требуется разнообразный строительный материал и значительные трудовые ресурсы, но полученный результат радует надёжностью конструкции.

Как залить фундамент плиту под дом.

Глубина залегания фундамента

Глубину залегания плитного фундамента определяют по уровню поверхностных вод и толщине основания.

Глубина залегания зависит от следующих факторов:

  • типа грунта;
  • глубины промерзания;
  • суммарных нагрузок;
  • уровня грунтовых вод.
Читайте также:  Цоколь из гранита и гранитной плитки: плюсы и минусы применения для облицовки фундамента дома, инструкция по отделке своими руками, цена материала и работ

Правильный способ закладки фундамента

Рекомендуемая глубина котлована приведена в нормативных строительных документах. Она может составлять, см:

  • в северных регионах – от 80 до 100;
  • в центральных и южных районах – от 30 до 70;
  • в горных районах – до 20.

Требования к глубине заложения фундамента

Расчет необходимого количества основной арматуры

Арматуру располагают равномерно по всей плавающей плите. В зависимости от толщины плиты каркас устанавливают в один или несколько рядов. Нормативное количество ярусов арматурной сетки при толщине плиты составляет:

Расчет расхода арматуры для плитного фундамента

  • до 15 см – 1 ряд;
  • от 15 до 30 см – 2 ряда;
  • более 30 см – 3 и более ряда.

Для продольных сеток рекомендовано использовать стержни диаметром 12–18 мм. Диаметр стержней поперечных сеток принимают 8–12 мм.

Шаг стержней зависит от толщины плиты. При ее высоте до 25 см шаг стержней принимают 15 см. При высоте плиты 25 см и более шаг стержней 10 см.

Изучение характеристик грунта

Размер плитного фундамента напрямую связан с несущей способностью грунта относительно давления, которое по проекту будет оказывать на него сооружение. Специалистами изучены и занесены в справочники значения оптимального удельного давления на грунт, поэтому застройщик самостоятельно должен рассчитать толщину плиты и сравнить с оптимальной характеристикой.

Несущая способность почвы, в свою очередь, зависит от ее химического состава, насыщенности влагой, механических свойств и т.д. Для грамотной оценки участка всегда целесообразнее привлекать специалистов в этом направлении.

Пример расчета

Цель:

  • Рассчитать высоту фундамента.
  • Определить расход материалов.

Расчет бетона на фундамент

Исходные данные:

  • Удельное нормативное сопротивление грунта – 0,350 кг/см2.
  • Размеры здания в плане – 4*8 м (320000 см2).
  • Общий вес конструкций – 24000 кг.
  • Размеры опорной плиты в плане – 6*10 м.
  • Плотность бетонной смеси – 2500 кг/м3.
  • Вес 1 погонного метра стальной арматуры — 1,210 кг/м.
  • Шаг основной арматуры – 100 мм.
  • Диаметр прутьев – 14 мм.

Расчет:

Расчет высоты фундамента

  • Суммарная нагрузка на фундамент 24000/320000=0,075≈0,08 кг/см2.
  • Разница между допустимым и фактическим давлением на плиту Δ=0,350-0,075=0,275 кг/см2.
  • Масса основания М=0,275*320000=88000 кг.
  • Толщина фундаментной плиты Н= (88000/2500)/32=1,1 м.
  • Длина стержней продольной арматуры 10 м, поперечной – 6 м.
  • Количество стержней поперечной арматуры: 6/0,10 *2 (слоя)=120 шт.
  • Количество продольной арматуры: 10/0,10*2=200 шт.
  • Суммарная длина стержней: 120*6 + 200*10=720 + 2000=2720 м.
  • Общая масса материала: 2720*1,210=3292 кг.

Видео по теме: Фундамент под дом — монолитная плита, расчет и армирование

  1. Публикации по теме
  2. Особенности вязки арматуры под ленточный фундамент
  3. Варианты фундаментов на болотистой почве
  4. Принципы расчёта расхода арматуры на 1 м³ бетона

Группы предельных состояний

Предельные состояния оснований – это состояния, при которых строительная конструкция прекращает удовлетворять требуемым параметрам (уменьшается сопротивление нагрузкам, возникают недопустимые смещения и повреждения).

В целом все несущие основания рассчитываются по 2-м группам предельных состояний. По 1-й группе основание рассчитывают на прочность и устойчивость, а по 2-й группе – на прогибы, деформации и величину раскрытия трещин:

  1. Первая группа (потеря несущей способности) — основная, т.к. если конструкция не проходит расчетами по ней, то это будет представлять угрозу для жизни.
  2. Вторая группа связана с непригодностью конструкций к нормальной эксплуатации.

( 2 оценки, среднее 4.5 из 5 )

Расчет плиты фундамента на онлайн калькуляторе – что надо знать

Говоря простыми словами, плитный фундамент это железобетонная плита, которая устанавливается под все здание или отдельную его часть. Отличительной чертой данной конструкции является неглубокое заложение.

Плитный фундамент может быть, как монолитным, так и сборным – состоять из нескольких одинаковых плит, соединяющихся между собой. Каждый из этих вариантов обладает и преимуществами, и недостатками.

Монолитный отличается высоким уровнем прочности, надежности и жесткости. А при использовании сборного требуется наличие специальной техники для транспортировки и укладки плит при монтаже конструкции и других работ.

Но сборные модели более быстрые в установке, так как отсутствует необходимость заливки бетона, монтажа опалубки и арматуры.

У плитного фундамента есть еще и дополнительное название – плавающий. Такое наименование обусловлено тем, что при любых подвижках почвы (пучение, осадка грунта), вместе с ней смещается и плита. При этом не возникает локальных деформаций – даже в сборном фундаменте плиты жестко скреплены между собой и устойчивы к постоянным механическим нагрузкам.

Разновидности «плавающего» фундамента Источник pallazzo.su

Если вы собираетесь устанавливать мелкозаглубленный плитный фундамент, то учитывайте, что его вверх одновременно является черновым полом первого этажа. При таком типе основания отсутствует возможность возведения подвального помещения.

Примечание! С другой стороны, создание подвала при плитном фундаменте осуществимо в принципе, но только в том случае, когда плита будет его полом, а значит должна залегать достаточно глубоко. Расчет плиты фундамента при этом следует проводить особенно тщательно и учитывать все особенности строящегося объекта.

Инструкция по работе с калькулятором

Данный онлайн-калькулятор поможет вам рассчитать:

  • площадь основания фундамента (например, для определения количества гидроизоляции, чтобы накрыть готовый фундамент)
  • объем бетона, необходимого для заливки всего фундамента с заданными параметрами. Так как объем заказанного бетона может незначительно отличаться от фактического, а так же вследствие уплотнения при заливке, заказывать необходимо с 10% запасом
  • количество арматуры, автоматический расчет ее веса, исходя из ее длины и диаметра
  • площадь опалубки и количество пиломатериала в кубометрах и в досках
  • необходимое количество материалов для приготовления бетона — цемент, песок, щебень
  • а также ориентировочную стоимость всех стройматериалов

Шаг 1: Первое — задайте размеры фундаментной плиты — ее длину, ширину и высоту. Далее, заполните параметры для расчета арматуры и опалубки.

При расчете арматуры необходимо указать размеры (длину и ширину) ячейки, из которых состоит один пласт (ряд) арматуры, и количество таких рядов (секций) в арматурном каркасе. А также диаметр арматурного стержня.

Для опалубки укажите размеры заготовленных досок.

Шаг 2: При расчете бетона имейте ввиду, что количество цемента, требуемое для изготовления одного кубического метра бетона различное в каждом конкретном случае.

Это зависит от марки цемента, желаемой марки получаемого бетона, размеров и пропорций наполнителей. Значения по умолчанию для пропорций и количества цемента, песка и щебня даны справочно, так, как обычно рекомендуют производители цемента.

Вы можете изменить эти значения в соответствии с вашими требованиями.

Шаг 3: При расчете стоимости стройматериалов, обратите внимание, что стоимость песка и щебня в калькуляторе указывается за 1 тонну. В прайсах же поставщиков цена чаще всего объявляется за кубический метр.

Так что пересчитывать цену за тонну песка и щебня вам придется самостоятельно или уточнять у продавцов. В любом случае, расчет все же поможет вам узнать ориентировочные расходы на строительные материалы для заливки фундамента.

При планировании, не забудьте еще про проволоку для вязки арматуры, гвозди или саморезы для опалубки, доставку строительных материалов, расходы на земляные и строительные работы.

Преимущества и недостатки

Основным достоинством плитного фундамента является значительна площадь опоры, за счет чего понижается давление на грунт и снижается возможность деформации стен и других несущих конструкций здания.

К другим преимуществам такого рода основания несомненно относятся длительный срок эксплуатации, безопасность применения, быстрый и простой монтаж, устойчивость к грунтовым и наземным водам, а также возможность строительства цокольного этажа и одновременное использование плит в качестве основы для пола первого этажа. Но все это возможно только если был произведен правильный расчет фундаментной плиты.

Монолитный фундамент это одновременно пол первого этажа Источник domsumom72.ru

Единственным, немаловажным недостатком плитного фундамента является его высокая стоимость. Однако высокая цена обычно оправдана – ведь это высоконадежная, долговечная, прочная конструкция с отменными техническими и эксплутационными свойствами.

Оставьте комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Adblock
detector